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Kolmogorov’s ‘third hypothesis ’ asserts that in intermittent turbulence the 
average t of the dissipation 8, taken over any domain D, is ruled by the lognormal 
probability distribution. This hypothesis will be shown to be inconsistent, save 
under assumptions that are extreme and unlikely. Further, a widely used justi- 
fication of lognormality, due to Yaglom and based on probabilistic argument 
involving a self-similar cascade, will be discussed. In  this model, lognormality 
indeed applies strictly when D is ‘an eddy’, typically a three-dimensional box 
embedded in a self-similar hierarchy, and may perhaps remain a reasonable 
approximation when D consists of a few such eddies. On the other hand, the 
experimental situation is described better by considering averages taken over 
essentially one-dimensional domains D. The first purpose of this paper is to 
carry out Yaglom’s cascade argument’ labelled as ‘microcanonical ’, for such 
averaging domains. The second is to replace Yaglom’s model by a different, less 
constrained one, based upon the concept of ‘canonical cascade’. It will be shown, 
both for one-dimensional domains in a microcanonical cascade, and for all 
domains in canonical casca.des, that in every non-degenerate caJe the distribu- 
tion of E differs from the lognormal distribution. Depending upon various para- 
meters, the discrepancy may be either moderate, or considerable, or even 
extreme. In  the latter two cases, high-order moments of E turn out to be infinite. 
This avoids various paradoxes (to be explored) that are present in Kolmogorov’s 
and Yaglom’s approaches. The third purpose is to note that high-order moments 
become infinite only when the number of levels of the cascade tends to infinity, 
meaning that the internal scale 7 tends to zero. Granted the usual value of 7, 
this number of levels is actually small, so the representativity of the limit is 
questionable. This issue was investigated through computer simulation. The 
results bear upon the question of the extent to which Kolmogorov’s second 
hypothesis applies in the face of intermittency. The fourth purpose is as follows. 
Yaglom noted that the cascade model predicts that dissipation only occurs in 
a portion of space of very small total volume. In  order to describe the structure 
of this portion of space, it will be shown useful to introduce the concept of the 
‘intrinsic fractional dimension’ A of the carrier of intermittent turbulence. The 
fifth purpose is to study the relations between the parameters ruling the distribu- 
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t,ion of E ,  and those ruling its spectral and dimensional properties. Both con- 
ceptually and numerically, these various parameters turn out to be distinct, which 
opens up several problems for empirical study. 

1. Introduction and synopsis of paper 
A striking feature of the distributions of turbulent dissipation in the oceans 

and the high atmosphere is that both are extremely ‘spotty’ or ‘intermittent’, 
and that their intermittency is hierarchical. I n  particular, both are very far from 
being homogeneous in the sense of the 1941 Kolmogorov-Oboukhov theory, 
in which the rate of dissipation E was considered as uniform in space and constant 
in time. I n  intermittent turbulence, t: must be considered a function of time and 
space. Let E(D) be its spatial average over a domain D. Several approaches to 
intermittency view E as lognormally distributed: in Oboukhov (1962), log- 
normality is a pragmatic assumption; in Kolmogorov (1962), it is a basic ‘ third 
hypothesis’ applicable to every domain D; in Yaglom (1966) it is derived from 
a self-similar cascade model,? which also predicts that the parameter p of the 
lognormal distribution and the exponent in the expressions ruling the correla- 
t’ion and spectral properties of E are equal. 

While substantial effort is currently being devoted to testing lognormality 
experimentally, the purpose of the present paper is to probe its conceptual 
foundations. On the one hand, as were the works of Kolmogorov and Yaglom, 
we shall be concerned with a phenomenology whose contact with physics remains 
remote. In particular, the central role of dissipation will not be disputed, despite 
the difficulties it shows. On the other hand, greater care will be devoted to matters 
of internal logical consistency and to details of the assumptions, and the theory 
will be further developed, in particul.ar in view of exploring the relation between 
theory and experiment. 

Since this paper is somewhat lengthy, the bulk of the mathematics (which 
as yet has no other application in fluid mechanics) will be postponed to $0 4 and 5. 
The main results will be stated without proof in this section and 9 2, and in the 
captions of the figures. Section 3 will elaborate on the important distinction 
between microcanonical and canonical cascades. 

(a) Part of this paper is devoted to  a new calculation relative to Yaglom’s 
cascade model for Kolmogorov’s hypothesis of lognormality. Let E(D) be the 
average of the dissipation E over a spatial domain D. One form of Yaglom’s 
model assumes that D is an ‘eddy’, perhaps a three-dimensional cube embedded 
in a self-similar hierarchy. On the other hand, in all actually observed averages, 

t It happens that a closely analogous cascade was considered by de Wijs (1951, 1953), 
a geomorphologist concerned with the variability in the distribution of the ores of rare 
metals. The results in the present paper may therefore be of help outside turbulence 
theory. A further incidental purpose of this paper is to provide background material to 
discussions of instances of interplay between multiplicative perturbations and the log- 
normal and Pareto distributions. Such interplay occurs in other fields of science where very 
skew probability distributions are encountered, notably in economics. Having mentioned 
this broader scope of the methods to be described, I shall leave its elaborations t o  other 
more appropriate occasions. 
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D is more nearly a very thin cylinder. By following up consequences of Yaglom’s 
model in this case, it will be shown that E(D) is never lognormal and that its 
‘qualitative ’ behaviour can fall into any of three classes. In  a drastically extreme 
first class, called ‘regular’, E(D) is not far from being lognormal. In  a second 
extreme class, called ‘degenerate ’, all dissipation concentrates in a few huge 
blobs. In  the intermediate class, called ‘irregular’, E(D) is non-degenerate but 
far from lognormal. Its most striking characteristic is a parameter al, satisfying 
1 < a1 < co, which rules the moments (ensemble averages) (Eh(D)). When 
h < a,, ($(I))) < co for all values of the inner scale y, but when W > a, and 
y = 0,  (Eh(D)) = co. Finally, when h > a, and y is positive but small, (Bh(D)) 
is huge and its precise value is so dependent upon y as to be meaningless. The 
regular class can be viewed as being the limiting case a, = CQ, and the degenerate 
class as corresponding to al < 1. Numerous inconsistencies that have been noted 
in the literature, concerning the behaviour of the moments of E under the log- 
normal hypothesis, will thereby be eliminated. 

(b )  Another part of this paper proposes a change in Yaglom’s model. The 
latter involves, though only implicitly, a hypothesis of rigorous local conserva- 
tion of dissipation within eddies, a feature which will be said to characterize 
his cascade as being ‘microcanonical’. It will be argued that it may be useful to 
view conservation as holding only on the average, and the resulting cascades, 
ca,lled ‘canoni~al’, will be investigated. When a cascade is canonical, it will be 
shown that any of the three classes of behaviour of E(D), as defined above 
under (a),  may be encountered even when D is an eddy, save for the replacement 
of the parameter al by a new parameter a3 > al. In  the same cascade, averages 
taken over cylinders and eddies may fall in different classes; for example, 
a regular E(D) when D is an eddy is compatible with an irregular E(D) when D is 
a cylinder; also, an irregular E(D) when D is an eddy is compatible with a de- 
generate E(E) when D is a cylinder. 

(c) Another aspect of this paper is purely critical, and concerns Kolmogorov’s 
second hypothesis, which asserts that the value of 7 does not influence S(D) in 
the similarity range. Such will indeed be shown to be the case when S(D) is in 
the regular class for every domain D, but not when all E(D) are in the degenerate 
class; in all other cases, the hypothesis is doubtful. Thus, the domains of validity 
of the second and third hypothesis are related. 

(d )  This paper introduces in passing a new concept, to be developed fully 
elsewhere. In  the regular and irregular classes, the bulk of intermittent dissipation 
is shown to occur over a very small portion of space, which will be shown to  be 
best characterized by, in preference to its relative volume (which is very small 
and too dependent upon y), a parameter A called the ‘intrinsic fractional 
dimension ’ of the carrier. 

( e )  Yaglom’s theory introduces yet another parameter, which characterizes 
the spectrum of B and is related to a correction factor to the exponent -: of the 
classic Kolmogorov power law. This parameter will be denoted by Q. The para- 
meters al, A and Q will be seen to be conceptually distinct. Naturally, the intro- 
duction of any additional assumption about the cascade introduces a relation 
among these parameters. For example, one may under a special assumption come 
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close to Kolmogorov-Yaglom theory, and deduce them all as functions of a single 
parameter p. The question of whether or not the actual parameters are distinct 
suggests much work to the experimentalist. 

(f)  For the sake of numerical illustration, a variety of one-dimensional 
canonical cascades was simulated on a digital computer, IBM System 3601 
Model 91. The results, unfortunately, cannot be described in this paper. Suffice 
to say that they confirm the theoretical predictions concerning the limiting 
behaviour, but throw doubt upon the rapidity of convergence to the limit. 

2. Background and principal results 
2.1. Background: Yaglom’s postulate of independence and lognormality 

The purpose of this section is to amplify items (a) ,  (b) ,  ( c )  and (f) of 8 1. To do 
so, it is necessary to begin by describing Yaglom’s cascade model, in a form 
that has been narrowed and made more specific (it is hoped that the spirit of 
Yaglom’s approach is thereby left unaltered). 

To begin with, the skeleton of the cascade process is taken to be made of 
‘eddies’ that are prescribed from the outset and are cubes such that each cubic 
eddy at  a given hierarchical level includes C cubic eddies of the immediately 
lower level (C is the initial ‘cell number’). This expresses the fact that the grid 
of eddies is self-similar in the range from 7 to L. Obviously, Ci must be assumed 
to be an integer and is denoted by I’. The sides (edge lengths) of the largest and 
smallest eddy are equal t o  the external scale L and internal scale 7 respectively. 

The unit of length will be assumed to be chosen so that 7 and L are not only 
dimensionless but are powers of I?. The density of turbulent dissipation a t  the 
point x is denoted by E( x, L, q), and the density average over the domain D by 
E(D, L, 7). (This sharpening of the previous notation E(D) is necessary because 
some arguments below will amount formally to varying the values of L and 7. )  
Units of dissipation will again be assumed to be chosen so that E is dimensionless. 
When D is a cubic eddy of side r and centre x (with -log, r an integer) we write 

E(D, L, 7) = 7(x, L 7). 

It is further assumed that the distribution of dissipation over its self-similar 
grid is itself self-similar, in the sense that, whenever 7 4 r < TI’ < L, the ratio 
ZrIr(xs, L, 7)/Ep(x, L, 7) is a random variable, to be denoted by &, whose distribu- 
tion is independent of r .  (Here, {xS} is a regular grid of centres of subeddies.) 

Next (an assumption that goes beyond self-similarity), the successive ratios 
EL,&L, FL,r2/EL,r, etc. down to ZrT/Err, are assumed independent. This makes 
logEr-logEL the sum of log, (Llr) independent expressions, each of which 
is of the form log Y .  Finally, assume {(log Y)2) < co (which implies that 
Pr ( Y = 0) = 0). Thus, log Cr - log E L  is a finite sum from a series that would, if 
carried out to infinity, satisfy the central limit theorem. One concludes that 
log 2, is approximately Gaussian, and thus Er is approximately 1ognormd-f 

t At this point, the reader may digress to the appendix, §§A 1 and A 2 ,  which involve 
two comments about lognormality. 
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2.2. Dissipation averaged over thin cylinders 

Nevertheless, there are several reasons why, even when all of Yaglom’s assump- 
tions are accepted, the argument sketched above does not suffice to justify 
Kolmogorov’s third hypothesis, that Z is lognormal for all D. First (not the basic 
reason), Yaglom’s argument is rigorous only when D is a cubic eddy. When D 
(while three-dimensional) is not an eddy, lognormality is a t  best approximate. 
The reason why this argument is not basic is that, for every three-dimensional D,  
the moments ( E h )  are finite for all h. A second more basic argument has to do with 
the comparison of theory and experiment. Even though averages taken over 
three-dimensional domains D may be appropriate to a theoretical characteriza- 
tion of turbulence (including the hoped-for linkage between the present pheno- 
menology and actual physics) such averages cannot be measured experimentally. 
Actual measurements, by necessity, involve averages taken over thin cylinders 
in time and space. By G. I .  Taylor’s ‘frozen turbulence hypothesis ’, such domains 
can be replaced by thin cylinders through the spatial flow, as frozen a t  a given 
instant in time. When the radius of such a D is of the same order of magnitude 
as the inner scale q of the turbulence, D can be approximated by a one-dimensional 
straight segment. Thus one must raise the question of whether or not, for such 
D’s, the distribution of B(E, L, 7) remains approximately lognormal. This question 
is not raised explicitly in Yaglom’s work. On the other hand, since he and sub- 
sequent writers are concerned with the extent to which the observed data fit 
the lognormal distribution, they assume implicitly that the dimensionality of the 
averaging domain D has little effect on the distribution of B(D, L, 7). 

This paper will show this implicit assumption to be unwarranted. More pre- 
cisely, whenever D is not an eddy, the computation of the distribution of B(D, L, q )  
will be seen to require further detailed assumptions about the cascade process. 
One such set of assumptions, compatible with Yaglom’s, is sufficiently simple to 
allow detailed study. It turns out that, except under trivial circumstances, 
E(D,, L, q), where D, is a cylinder of length r and radius 7, is not lognormal. 

To introduce this simplest set of detailed assumptions about the cascade, it 
suffices to view the hierarchy of eddies as a more or less formal device for con- 
structing the fully cascaded state of the medium, through division of space by 
imaginary lines into even smaller chunks. If so, every stage of splitting preserves 
the total dissipation, and hence the average of local averages. The simplest 
procedure is to assume nothing else about the corresponding Yaglom ratios Y .  
Such a cascade will be called ‘microcanonical’. Here, it turns out that successive 
ratios of the form E(D’, L, q)/E(D”, L, q), when D’ and D” are cylinders of identical 
length r but different cross-sections (with D‘ embeded in D“), are not independent. 
In  order to formalize the limit process of Yaglom, we shall view the internal 
scale q as a variable tending to zero. In  $5 3 and 4 it will be proved that, except 
in a trivial case, the distribution of the limit B(D,, L, 0 ) ,  where Do is an infinitely 
thin cylinder, is never lognormal. In  some cases, the difference is small, but in 
other cases it is great, implying that the influence of the dimension of D over the 
distribution of E(D,, L, 0) may be critical. The extent of the divergence of the 
distribution from the lognormality is expressed to a significant extent by the 
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8. E X O  l;- 1 

FIGURE 1. The distribution of the averaged dissipation E is determined by that of the 
random weight W ,  which is roughly speaking Yaglom’s ratio between the average dissipa- 
tion with a subeddy and an eddy. We plot the function $,(h) = logr ( Wh) - (h  - i), which 
is always convex. Through $l(h), all presently interesting aspects of the said dependence 
are described as follows. The spectral properties of 5 (the only one to have been examined 
before the present study) are determined by thevalue of q4(2). In  addition, the distribution 
properties (finiteness of moments) depend on the value of al, defined as the root (other 
than h = 1) of the equation $,(h) = 0. Finally, the fractional dimension of the carrier of 
turbulence depends on the values of $i(l). Thus, from the viewpoint of properties of .? 
of present interest, its distributions can fall into the following three classes. (a) Regular 
class: $i(l) < 0, q4(2) < 0 and a1 = a. (b )  Irregular class: $i(i) < 0, $,(2) < 0 and 
1 < a, < co. (c) Degenerate class: $i(l) > 0, $,(2) > 0 and 0 < a, < 1. 

value of a parameter, denoted as al, which is defined as the second zero (the 
first being h = 1) of the equation 

$,(h) = log, (Yh>- ( h -  1). 

The definition of a, is motivated in $4.3, and illustrated on figure 1 (the latter 
uses the notation W instead of Y ;  the relationship between the two will be 
explained in 5 3). 

The first class, called ‘regular’, includes all Y that are bounded by r. Here, 
one has z1 = 00. The resulting E(Do, L, 0 )  only differs from lognormality by a factor 
that is random, but is essentially independent of 7, and has, like the lognormal 
distribution, finite moments to every order. 
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The second class, called ‘degenerate ’, corresponds to Y’s that are ‘sufficiently 
scattered’ (in fact more scattered than is likely in nature; nevertheless, the case 
must be fully understood). Here one has a, < 1. The resulting E(Do, L, 0 )  vanishes 
almost surely. In  particular, one has, for every h, (d (Do ,  L, 0 ) )  = 0. Perhaps 
against ‘physical intuition’, E(Do, L, 0) = 0, and hence (E(Do, L, 0 ) )  = 0 is com- 
patible with the combination of lim (E(D,, L,7) )  = 1, lim(Eh(D,, L , y ) )  = 0 for 

h < 1, and lim(Eh(D,, L, 7)) = 00 for h > 1. Thus, one is dealing with a com- 

paratively rare instance when the possible discrepancy between the moments of 
the limits and the limits of the moments is not a mathematical pathology, but 
has possible direct practical consequences.t A classical illustration of the pos- 
sibility of obtaining this discrepancy is the sequence for which E(D, L, 7)  equals 
l/q with probability 7, and equals zero with probability 1 - 7. Thus the degenerate 
case suggests that, when 7 is non-zero but small, dissipation concentrates in 
a few huge blobs. 

The third class, called ‘irregular’, includes all Y’s that are not too scattered, 
but nevertheless can exceed I?. Here, one has 1 < a, < co. Then, (E(D, L, 7)) 
remains identically equal to one, while higher moments (8) behave as follows: 
they remain finite when h < a,, but when h > a,, they tend to infinity as 7 -+ 0, 
which implies that when 7 is positive but small their values are extremely large 
and in practice can be considered infinite.$ 

When a probabilist knows that moments behave as stated above, with the 
loose additional requirement that the function Pr (5 > x) is ‘ smooth ’, the simplest 
distribution he is likely to envisage is the ‘hyperbolic’, defined as follows: 
minE = xo = .,/(a,- 1) > 0 and Pr ( E  > x) = ( x / ~ ~ ) - ~ i .  The next simplest pos- 
sibility is Pr (E > x) = C ( x )  x-~I,  where C(s) varies ‘smoothly and slowly’ as 
x -+ co (for example, has a non-trivial limit, or perhaps varies like log x or l/log x). 
Such random variables E are called ‘asymptotically hyperbolic ’ or ‘Paretian ’. 
To test for their occurrence, it  is common practice to plot log Pr ( E  > x) as a func- 
tion of logx: the tail of the resulting curve should be straight and of slope a,. 
However, the more interesting prediction concerns the case when 7 is very small 
but positive. If so, all moments of Z(D, L, 7) are very large but finite. If its 
distribution is again plotted in log-log co-ordinates, it  must end on a tail that 
plunges down more rapidly than any straight line of finite slope. However, the 
behaviour of the moments of E as 7 + 0 also yields a definite prediction for small 7, 
namely the following: the log-log plot of the distribution i s  expected to include a long 

t This is a bit reminiscent of the singularity, familiar in fluid mechanics, encountered 
when the coefficient of viscosity tends to zero. 

$ Footnote added in 1972, during revision. Two papers by Novikov (1969, 1971), of 
which a referee has made me aware, help to put these results in focus. On p. 236 of his 
1971 paper, Novikov observes that the moments of i3 do not tend towards those of the 
lognormal distribution. On the other hand, he claims that ‘‘in the same manner m in 
[a textbook by] Gnedenko, it may be shown that the limit distribution is lognormal”. 
The puzzling discrepancy between these results appears to be due to the use of conflicting 
approximations. Earlier, Novikov (1969, p. 105) states that “all moments (if they exist) 
must have a power law character”. The phrase in parentheses raises the possibility that 
moments may not exist, but this possibility is regrettably dismissed by not being dis- 
cussed again. 

?+O ? P o  
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‘penultimate’ range within which it is straight and of slope a,. This i s  one of the 
main predictions of the present w0rk.t 

The ease of verifying this prediction increases as the slope a, becomes less 
steep. The value of a, can (in an approximation discussedin 3 4.8) be inferred from 
the spectral exponent Q = p as equal to about 2/p N 4. This suggests that moments 
should misbehave for h > 4. Further discussion of empirical results is better 
postponed until more data are available. 

2.3. Validity of the microcanonical assumption and 
introduction of canonical cascades 

The second purpose of this paper is to probe Yaglom’s assumption that the ratios 
of the form E(D8, L, y)/.Z(D, L, y),  relative to a subeddy D, and to an eddy D 
containing D,, are independent. We noted that this is satisfied by the micro- 
canonical model, in which the cascade is merely a way of splitting up space. But 
less formalistic interpretations are conceivable. For example (while keeping the 
approximation that in a cascade an eddy divides exactly into subeddies) one 
may view cascading (still a way of building up the fully cascaded state) as 
combining splitting with some kind of diffusion, in such a way that conservation 
of dissipation only holds on the average.1 The resulting model, to be called 
‘canonical’, is interesting because (a )  when D is a cylinder the results it yields 
are essentially the same as in the microcanonical model, and ( b )  Yaglom’s ratios 
turn out to be so strongly interdependent that Z(D) fails to be lognormal even 
when D is an eddy. The theory of the canonical E(D) with D an eddy follows the 
same pattern as the theory of the microcanonical E(D) with D a cylinder. Thus, 
it can fall into either of the three classes noted in $2.2,  with the change that 
one must replace a, by a new parameter a3. Ordinarily, one has a3 > a,. 

Since in some cases the predictions of the canonical and the microcanonical 
models are very different, the degree of validity of Yaglom’s model depends on 
the solidity of the foundations of the microcanonical assumption. It would be 
nice if either kind of cascade turned out to have a more precise relationship with 
the physical breakdown of eddies but so far no contact has been established. 
As a matter of fact, the accepted role dissipation plays in the current pheno- 
menological approach to turbulence should perhaps be downgraded, and the 

f This contrast between Yaglom’s conclusions and mine turns out to be parallel to the 
contrast between two classic chapters of probability theory. (a)  In  the theory of sums of 
many nearly independent random variables, the asymptotic distribution is, under wide 
conditions, universal, namely, Gaussian. (b)  In the theory of the number of offspring 
in a birth-and-death process, the asymptotic distribution depends upon the distribution 
of the number of offspring per generation, so it is no longer universal. Using statistical 
mechanics, the thermodynamic properties of matter had been reduced to theory (a)  above, 
which is why they are largely independent of microscopic mechanical detail. What Yaglom 
claims in effect is that the same is true of turbulent intermittency; I have found it, on 
the contrary (see $4.3), t o  be closer to theory (b ) ,  the resulting absence of universality 
being probably intrinsic. More precisely, the theory underlying this paper is an aspect of 
the ‘theory of birth, death and random walk’. 

$ The ‘dissipation’ here invoked corresponds physically to the rate of energy transfer 
between eddy sizes, rather than to the ultimate rate of conversion of eddy kinetic energy 
into heat. 
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canonical model of a cascade be rephra.sed in terms of energy transfer between 
different scale sizes. Nevertheless, attempting this would go beyond the purpose 
of the present work, and we shall stick to the logical analysis of the cascades. The 
relative advantages of the two main models are as follows. 

Yaglom’s argument. In  the case of cylinders, it  requires amplification that may 
lead to substantially non-lognormal results; in the case of cubes, it  is disputable. 

The canonical alternative. In  the case of cylinders, it appears to be a nearly 
inevitable approximation, and in the case of cubes, it may well be an improvement. 

2.4. Kolmogorov’s ‘second hypothesis of similarity’ 

The possibility of peculiar behaviour of the moments makes it useful to probe 
Kolmogorov’s second hypothesis, as stated originally (1 941) for homogeneous 
turbulence and asgeneralizedinKolmogorov (1962) to intermittency. Intuitively, 
if D is a domain of characteristic scale $ 7, the hypothesis is that the distribution 
of B(D, L, 7) is nearly independent of 7. To state this rigorously, make 7 into 
a parameter and let it tend to zero. Kolmogorov’s second hypothesis might 
merely express that limZ(D, L, 7) should exist. If so, and if (as is usual in mathe- 

matics) the concept of a limit is interpreted through ‘convergence of probability 
distributions ’) then for both the canonical and the microcanonical cascades the 
second hypothesis will indeed be satisfied. But mathematical convergence need 
not be intuitively satisfactory, and the second hypothesis ought perhaps to be 
interpreted in stronger terms. 

When D is an eddy of the microcanonical model, and for other D’s and models 
leading to the regular class above, we have Z(D, L, 7) -+ E(D, L, 0) mathematically 
and, for all h > 0, (Zh(D, L, 7)) -+ (Eh(D, L, 0)). In  this case, as long as 7 is small, 
it  is permissible to consider the ‘error term ’ E(D, L, 7) - E(B, L, 0) as being itself 
small. Kolmogorov’s intuitive second hypothesis holds uncontroversially. When 
convergence is regular for both eddies and cylinders, the Kolmogorov-Yaglom 
lognormal approximation is (up to a fixed correction factor) workable. 

In  the degenerate convergence class, on the contrary, Pr {E(D, L, 0) = 0) = 1. 
For 7 > 0 but small, E(B, L,  7) and E ( 0 ,  L, 0) may be mathematically close, but 
are intuitively very different. The actual behaviour of ? when convergence is 
degenerate appears to resemble the illustrative example given above. As a result, 
Kolmogorov’s second hypothesis is not really applicable to this class. 

When convergence is irregular, for small 7 the error term E(D, L, 7) -E(D, L, 0) 
is extremely likely to  be small, but in cases when it is not small, it  may be very 
large, so that its own moments of high order are infinite. In this case, the 
Kolmogorov second hypothesis is controversial, its degree of validity improving 
as z1 increases. 

T-+O 

2.5. Relationship with the ‘limiting lognormal’ model 

Every cascade model involves eddies. The present paper follows Yaglom in 
assuming them to be prescribed in advance. In addition, both the canonical and 
the microcanonical variants allow the distribution of dissipation between neigh- 
bowing subeddies to be highly discontinuous. However, an earlier study, 

22-2 
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Mandelbrot ( 1972)) has investigated still another alternative cascade model, 
using a ‘limiting lognormal process). Its principal characteristic is that it  
generates its own eddies of different shapes, and that the distribution of dis- 
sipation within eddies is continuous. This feature will appear especially attractive 
when the study of the geometry of the carrier of turbulence is pushed beyond the 
concept of fractional dimension, to include matters of connectedness. The 
limiting lognormal model can be viewed, though it was developed first, as an 
improvement upon a canonical cascade with a lognormal weight W .  Section A 4  
will describe its main characteristics. 

2.6. Simulation study of the rapidity of convergence in the 
canonical cascade process 

As always in the application of probability theory, limit cascades (involving 
infinitely many stages) are of practical interest primarily because the formulae 
relative to actual cascades (in which the number of stages is large but finite) are 
unmanageable. The present paper goes a step further, by including ‘qualitative’ 
arguments about the nature of error terms for finite cascades. In  addition, I have 
arranged numerous computer simulations. The very tentative conclusions are 
(i) that many of the involved discrepancies from lognormality should manifest 
themselves only in a relatively small number of largest observations, and (ii) that 
they depend greatly upon high-order moments of the Yaglom ratio Y ,  which 
express comparatively minute characteristics of the cascade model. If this is 
confirmed, then lognormality may combine the worst of two worlds: it could 
prove fairly reasonable qualitatively, while its use for any calculation that in- 
volves moments could not be trusted. If so, even Oboukhov, who did evaluate 
moments, would prove less pragmatic than he thought. Nevertheless, having 
expressed those fears, I hasten to say that I do not share them, and that I be- 
lieve the study of intermittency to be very enlightening as to the nature of 
turbulence. 

3. Introduction to canonical and microcanonical cascades 
3.1. A detailed cascade model 

To be able to make a prediction about E(D, L, 7) when D is a cylinder, one needs 
assumptions about the local distribution of e within eddies. We shall build a model 
formally, by making 7 smaller and smaller. 

Initially, 7 = L and the dissipation, equal to Z(x, L, L) ,  is uniformly dis- 
tributed in space. Each successive stage of the cascade begins with dissipation 
whose density is uniform in each eddy of side r .  Such an initial distribution is 
the same as if one had 7 = r ;  it can therefore be denoted by E(X, L, r) .  The stage 
ends with dissipation whose density is uniform in each subeddy of side ./I?. When 
the centre of an eddy of side r is denoted by x, the centres of the immediately 
smaller subeddies will be denoted by x,, with 0 < s < C - 1 ; they form a regular 
lattice. The corresponding densities can be denoted by e(x,, L, r/I’). Next, 
designate the random variable ~ ( x , ,  L, r/I?)/e(x, L, r )  by x. The ratio W and 
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Yaglom’s ratio Y differ by the fact that W involves local densities and Y in- 
volves averages, but in one model (the microcanonical) the concepts of Y and 
W will merge. Homogeneity suggests that, at each cascade stage, the s random 
variables of the form W, have the same distribution. Self-similarity and Kolmo- 
gorov’s second hypothesis suggest in addition that the distribution is the same 
for all values of s, r ,  L and 7. The final stage ends with eddies of side 7, and with 
density O(X, L, 7). 

Factoring out of E(D, L, 7). The random variable e(x, L, 7) resulting from the 
above cascade has a single parameter: Ll7. Moreover, since the actions of eddies 
of sides above and below r are quite separate, one can write e,(x, L, 7) as the 
product of two statistically independent factors, which can be studied separately, 
and identify them respectively with $(x,L,r) and C,(x,r,y). The former is 
a ‘low frequency factor’, being independent of 7 and having r /L  as the sole 
parameter; the latter is a ‘high frequency factor’, being independent of L and 
having r/q as the sole parameter. More generally, when D is not an eddy but is 
included in an eddy of side r,  one has 

3.2. The approximate lognormality of the low frequency factor EJx, L, r )  and 
the question. of whether or not W can take the value zero 

For the low frequency factor, it suffices to follow Yaglom, as in 3 2.1, 

being the sum of log, (L/r)  random factors of the form W .  Assuming 

log E, is approximately normally distributed, and C,(x, L, r )  is approximately 
lognormal. 

A finite ((log W ) 2 )  implies in particular that W = 0 has zero probability. On 
the other hand, there is a model by Novikov & Stewart (1964) which assumes that 
W = 0 has a positive probability. In  that case, T(x, L, r )  is usually a mixture: 
with some positive probability, it  vanishes, and with the remaining probability, 
it is lognormal. In  the present paper, to allow W = 0 will not be any complication, 
and in fact will allow consideration of examples useful because of their simplicity. 

3.3. The high frequency factor: limiting behaviour for q -+ 0 

This limiting behaviour is ruled by the following theorem (stated at the inter- 
mediate level of generality a t  which the proof is simplest, a level more general 
than is required and less general than is possible). 

THEOREM. Let the domain D be simple, meaning for i = 3 that D is the sum of 
a finite number of eddies, and for i = 1 that D is the sum of a finite number of 
eddy edges. Consider E(D, L, 7) (for fixed D and L) as a random function of 7. 
Assume ( W )  = 1 and let 7 -+ 0. Then, with probability equal to 1, E tends to 
a finite limiting random variable. 
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Proof. This proof is written as a digression addressed to readers having an 
elementary knowledge of the theory of ‘martingales’ (which is the next most 
obvious mathematical generalization of the theory of products of independent 
random variables of unit expectation, such as Yaglom ratios). In order to conform 
to the usual presentation of martingales, let us view the actual value of the 
inner scale p as the ‘present value’, values p’ < p and p’ > p being respectively 
viewed as ‘future’ and ‘past’. A martingale is a random function such that the 
expectation of a ‘future’ value, conditioned by knowing the present value and 
any number of past values, is equal to the present value. ‘Time ’ is here discrete, 
being equal to -log, 7. Assume that D is an eddy of side r ;  a similar argument 
applies to other simple D’s. Denote its subeddies of side r / r  by 0,. We know that 

Designate by Ec the conditional expectation when one knows the present and 
any one of past values of E(D, L, 7). Since ( W )  = 1, we have 

1 0 - 1  

This proves that E(D, L, p )  is a martingale. Moreover, E is non-negative. Hence, 
it obeys a convergence theorem (Doob 1953, p. 319) which asserts that, as p .+ 0, 
E(D, L, p )  converges to some limiting random variable, to be denoted as E(D, L, 0). 

Corollary. In  the case of cubic eddies E,.(x, r, p )  converges to a limit EJx, r ,  0). By 
self-similarity, the limit is independent of r ,  so it can be denoted by E1(x, 1 , O ) .  

Remark. The above theorem means that, when r /q % 1, one knows E(D, L, 7) 
‘approximately ’ without knowing the exact value of p .  However, any more 
detailed information about the quality of approximation involves the character 
of the convergence of E(D, L, p )  to E(D, L, 0) (regular, irregular or degenerate), 
and in turn requires more detailed assumptions about the model, e.g. about the 
set of random variables W .  

3.4. The microcanonical cascade 
c- 1 

s=o 
A cascade will be called microcanonical i f  the sum 2 of the weights W ,  that 

correspond to all the subeddies of any eddy i s  precisely equal to G .  As a corollary, 
(W) = 1 and W < C. The microcanonical condition expresses that, a t  each 
cascade stage, the total dissipation r3 ~ ( x ,  L, r )  within an original eddy is replaced 
by an equal dissipation distributed among its C subeddies of centres x,, namely 

Hence, as long as p < r ,  T(X, L, p )  = E(X, L, r ) ,  independently of p .  This shows 
the high frequency factor EJx, r ,  p )  to be identically equal to 1, and in particular 
independent of p .  Consequently, Yaglom’s ratio Y, coincides with W,, and his 
postulate of independence is satisfied. Thus, the theory of microcanonical averages 
taken over three-dimensional eddies i s  seen to coincide with Yaglom’s theory.? 

t The converse, that Yaglom’s theory is identical t o  the microcanonical theory, is also 
true, under certain additional constraints, but there is no need to digress for the proof. 
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Notice that the microcanonical weights W ,  are statistically dependent. In  
particular, if s =k t 

(Kw,) = (W,E,(w,, knowing W,))  = ( W C -  W,) / (C-  1)) 

= 1 - (( W2) - 1) (C- 1)-1 < 1 = (w,) (w,). 
This inequality expresses that any two weights are correlated negatively (see 
3 A 5 ) .  Higher cross-moments, e.g. (W:W,), are also < 1. 

3.5. The canonical cascade 

A cascade will be called canonical i f  the weights W ,  are statistically independent and 
satisfy ( W )  = 1, meaning that the sum of the weights is equal to C on the average. 
It will become critical to allow W to exceed the ceiling W = C. 

The canonical variant as an  approximation for cylinder averages in a micro- 
canonical cascade. Consider the cylinder of length r constituted by a string of 
elementary eddies of side 7 hugging one edge (to be called the ‘marked edge’) of 
a cubic eddy of side r .  The dissipation in this cylinder can be obtained through 
a sequence of two different subcascades. The first subcascade, applicable until 
an eddy of side r has been reached, follows the mechanism described in 3 3.3, 
ending up typically with a lognormal ET(x, L, r ) .  The second subcascade is ruled 
by a different mechanism. The first difference is that each stage only picks those 
subeddies placed along the marked edge, and we know their number is not C but 
r = (2%. The second difference is that the conditions imposed on the corresponding 

r-1 
weights are ( a )  W, < C, ( 6 )  C W ,  6 C and (c)  (W,) = 1. By contrast, if the 

second subcascade had been microcanonical with I? subeddies per eddy, the 

weights would have obeyed the conditions (a’) W ,  < I? and (b’) C W ,  = I’, which 

are much stronger. As C -+ co and r /C  -+ 0, conditions (a) and (b )  above become 
increasingly less demanding in comparison with (a’) and (b’). 

This observation gives us a choice between two procedures. One can study the 
line sections directly and rigorously. Alternatively, the second subcascade 
generating a line average can be approximated by a canonical cascade. In  this case, 
the condition W < C may, in a first approximation; be waived; W may even be 
approximated by a lognormal random variable, though the latter is unbounded. 

Hence, even if the cascade ruling the cubic eddies is trusted to be micro- 
canonical, the theory of canonical cascades turns out to be a useful approxi- 
mation. Incidentally, its most striking result, divergence of high moments, is 
confirmed by the direct argument. 

The eJffect of the condition W < C upon the difference between the results of the 
microcanonical and the canonical models. In  order for three-dimensional canonical 
eddies to be regular, meaning that averages yielded by the canonical and micro- 
canonical theories only differ by a factor that is random but rather innocuous, 
the necessary and sufficient condition is W < C. When W < I?, the same applies 
to one-dimensional averages. But when I’ < max W < C ,  the two kinds of 
averages belong to different classes and thus may differ significantly. 

3=0 

r-1 

3=0 
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4. Classification of cascades according to the behaviour of the moments 
of z 
Let D be an eddy of dimension i = 3. The definition of 9 3.3 yields, irrespective 
of the rule of dependence between the W’s, 

4.1. A basic recurrence relation for B(D, L, 7) 

c- 1 

z r T ( X , L r )  = C-l c c . ( x , , L r ) >  
s=o 

where (x,} is a regular grid of centres of subeddies. Factor the B on both sides into 
products of low and high frequency components as follows: 

c- I 

Next replace Zr(xs, L, r )  by l@r,(x, L, rr) and divide both sides by Err(x, L, rr). 
We obtain 

c- 1 

s=o 
zrr(x, r r ,  7) = C-l c K 7 ( x s ,  r ,  7). 

Finally, taking account of self-similarity, we obtain the following basic 
recurrence relation: 

c- 1 

s=o 
w, 1, r/rr) = c-1 I: w,c,(x,, 1 ,  YIT). 

When i = 1, D and D, being straight intervals of length r ,  one has, similarly, 

r-1 
a(D, 1 , r f r r )  = r-1 W,s(Ds, 1 , r / r ) .  

,=O 

Derivation of the moments of eddy averages from the basic recurrence relation. 
For h = 1, it  suffices to check that the relation (Z1(x, 1 , ~ ) )  = 1 and the above 
recurrence relation are compatible. For h > 1, the recurrence relation for El can 
be used to deduce a recurrence relation for the sequence of the moments 
@(x, 1, F)). The form of the latter depends on the rule of dependence between 
the W’s. Throughout, we shall set r = 1, which will simplify the notation. 

The microcanonical case. We know that El(x, 1 , ~ )  = 1, but we want to verify 
that @(x, 1, r ) )  = 1. Indeed, for h = 2,  

(%(x, 1, r / U )  = c((w/c)2) (W, 1, r ) )  + C(C - 1) ((WC) (W,/C)> [(El(% 1, r))I2 
= (( WZ>/C) (Z?(X, l,T/)) + (C - 1) c-l[ 1 - (( WZ) - l) /(C - I)]. 

Starting from (U:(x, 1, 1)) = 1, we obtain 

< z ; ( x , i , i / r ) )  = (w~)/c+i-c-l-(w~)/c+c-l= 1.  

The recurrence relation reduces to the identity 1 = 1, as it should. The recurrence 
relations for h > 2 also reduce to identities. 
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The canonical case. Now, the recurrence relation for moments takes the form 

= ((W2)/C) (W, 137)) + (C - 1w. 

This is no longer an identity, but rather it establishes that the necessary and 
sufficient condition for lim @(x, 1 , ~ ) )  < co is ( Wz)/C < 1. Similarly, 

7/40 

lirn ($(x, 1, $1)) < 00 if and only if ( Wh)/Ch-l < 1. 
I-fO 

Conclusion. For eddy averages, the asymptotic behaviour of the moments de- 

A necessary and suficient condition. In  order for the inequality ( Wh)/Ch-l < S 

Proof of necessity. { Wh)/Ch-l < 1, i.e. (( W/C)h) < l/C, implies that 

pends on the nature of the cascade. 

to hold for all h, it is necessary and sufficient that W < C. 

max ( W / C )  = lim [(( W/C)h)]”h < lim C-ln = 1. 
h+m la+ OD 

Proof of suficiency. Knowing that ( W )  = 1 and W < C, (( W/C)h) is maximized 
by setting W = C with the probability SIC, and W = 0 with the probability 
1 - l/C; in this extreme case, (( W/C)h) = llC, so in all other cases ( Wh)/Ch--l < 1. 

Derivation of the moments of line averages from the basic recurrence: the micro- 
canonical case. The recurrence relation for moments is now replaced by 

( w ,  1, r/r)) = r((w/cm ( E ~ P , ,  1,q)) + (r - 1)  r - ~ p m )  
= ((w2)/r)(E2(os, i,V))+(r-i)r-i[i-((W2)-i)(c-1)-11. 

This  is  no longer a n  identity: the necessary and sufficient condition for 

lim (E2(D, 1 , ~ ) )  < co 
7/+0 

has become ( W 2 ) / r  < 1. Similarly 

lirn (Eh(D, 1 , ~ ) )  c 00 if and only if ( Wh)/rh--l < 1. 
7/+0 

The canonical case. The recurrence relation is unchanged when the dimension 
changes from i = 3 to i = 1, except for the replacement of C by r. Therefore, 
we fall back on the condition { Wh)/rh-l < 1 of the preceding paragraph. 

Conclusion. For line averages, the finiteness of the limiting moments is not 
dependent on the nature of the cascade. On the other hand, the value of the 
limiting moment, when finite, is smaller when the cascade is microcanonical ; 
e.g. for h = 2, it is smaller by the factor 1 - ( (Wz)  - l ) / (C - 1). 

4.2. The determining functions 

In  order to apply the above results to classify cascades, and in order to carry 
the theory further, it is convenient to consider the expression 

f ( h )  = loge ( W h h  
to be called the ‘determining function’; more specifically, when D is i- 
dimensional, we shall need 

#Ah) = (3 / i ) f (h )  - (h- 1) .  
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To define various parameters of dissipation, different features of these func- 
tions must be examined. First of all, (Wh)/(C*i)h--l < 1 is synonymous with 
$,(h) < 0, and so the values of the zeros of $i(h) are of interest. 

For all h, by a general theorem of probability theory, f(h) is a convex function 
of h (see Feller 1971, p. 155), and so are all the 4,. One hasf(1) = $ i ( l )  = 0, and 
so &(h) has a t  most one root other than I ;  i t  will be designated ai. The condi- 
tions $,(h) < 0 and $&) < 0 are both a t  least as demanding as $&) < 0, so 
when a, > 1, the ai satisfy a, Q az Q a3. 

A further investigation of the cji involves their slopes for h = 1, more specifically 

= -3(W10gc W)+i. 

Writing A3 = A, we have A2 = A -  1 and A, = A -  2. The value of Ai will be 
useful, because an i-dimensional average in a canonical cascade is degenerate 
when Ai < 0 and non-degenerate when Ai > 0; in particular, when W < Cfi, 
Ai > 0. (The transition case A, = 0 deserves the attention of the mathematicians, 
but is too complicated to be tackled in this paper.) More precisely, in the de- 
generate case A, < 0, ai satisfies ai < 1, and its value will play no special role. 
But in the non-degenerate case Ai > 0, ad satisfies ai > 1 and serves to determine 
whether the cascade is regular (ai = a) or irregular (ai < 00). 

We know that ai = co is equivalent to ( Wh)/(C)i)h-l < 1 for all h > 1, and 
so we know that the necessary and sufficient condition for ai = co is W < C@, 
already featured in $ 2.2 .  

When Ai > 0, the quantity Ai also plays an independent role as the intrinsic 
dimension of the support of E within an i-dimensional domain D; see $4.8. 
Wlog W is concave, and hence (Wlog W) > (W)log(W) = 0; therefore, the 
intrinsic dimension Ai never exceeds the corresponding physical dimension i. 

Finally, the second-order dependence properties of the dissipation, namely its 
correlation and its spectrum, depend on the value off(2). Indeed, the correlation 
between averages taken over domains D that are small in comparison with the 
distance d between them was shown by Yaglom to be proportional to d-Q, with 

& = 310gc(W2) = 3f(2) = 3[$,(2) + I]. 

To obtain a lower bound on Q, note that from ( W )  = 1 i t  follows that (Wz)  > 1 
and hence Q > 0; more precisely& > 3( I + $A( 1))  > 3 -A .  As for the upper bounds, 
when W < C, we know that the maximum of (Wz)  (constrained by { W )  = 1) 
occurs when Pr ( W = C) = l/C and Pr ( W = 0) = 1 - ljC, in which case ( W2) = C 
and so Q = 3. More generally, W < C)$ implies Q < i. When WIG), may exceed 1, 
on the contrary, it  is possible that Q > i. 

Studies involving correlations of higher order h similarly depend on values off 
up to the argument h. Since we shall stop at  the second order, our classification of 
canonical cascades will depend solelyon the values of &, A andai. These parameters 
are conceptually distinct, and since their numerical values are only related by 
the conditions of compatibility Q > 3 - D and (ai - 1) Ai > 0, they can depend 
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differently upon the specific model chosen. The question of whether or not their 
actual values are related might stimulate experimental investigations. 

The relationship between W ,  f (h) and the different parameters deserves 
amplification from the viewpoint of mathematical determination. A knowledge 
of C and of the distribution of W determines f (h) for all h, and thus determines all 
the parameters. On the other hand, a knowledge of C and of f (h )  for F, an integer 
need not determine W uniquely. A sufficient condition is that the moments 
satisfy the Carleman criterion (see § A  2).  This technicality is important because 
this criterion fails in the case of a lognormal W .  

4.3. Examples of determining functions 

Rectilinear determining functions. The functions f and #i are linear functions of h, 
if W is binomial with Pr (W = 1/p)  = p and Pr (W = 0) = 1- l / p .  One has 
( Wh) = ~ p - ~  =  PI--^, so that q&(h) = (1  - h) log, (pC) ,  which is a degenerate form 
of convex function. 

In  a somewhat digressive but brief paragraph, we shall simplify this example, 
and through it the canonical Novikov-Stewart (1964) theory; because it can be 
discussed fully with the help of the classical probabilistic theory of birth-and- 
death processes (Harris 1963). After K stages, each elementary subeddy either 
is empty or includes a non-random mass of turbulence equal to P - ~ .  Save for 
this factor, the mass of turbulence in an eddy and the number of its non-empty 
elementary subeddies are equal. Their distribution is readily determined, because 
every time K increases by unity, each non-empty elementary eddy can be 
viewed as having acquired a random ‘offspring’ made of M lower order ele- 
mentary eddies, with M following a binomial distribution of expectation C@p. 
When M = 0, the eddy ‘dies out’. When M > 1, new eddies are born. Classical 
results on birth-and-death processes show that the number of offspring after the 
Kth generation is ruled by the following alternative. When C3ip 6 1, i.e. Ai < 0, 
it is almost certain that the offspring will eventually die out. When p > 
and Ai > 0, on the contrary, the number of offspring, if normalized by being 
divided by ( C s i ~ ) ~  = C4AiK, tends asymptotically towards a non-degenerate 
limiting random variable that has finite hth moments for all h. 

Asymptotically rectilinear determining functions. Now let us only suppose that 
W is bounded. Designate its greatest attainable value by max W.  This means that 
Pr ( W > max W )  = 0 and Pr (W > max W - 0) > 0 for all 0 > 0. (A more correct 
mathematical idiom for max W is ‘almost sure supremum’.) It follows that - 
lim (log, (Wh)/h) = log,max W ,  which implies that f fh) has an asymptotic direc- 
h8-trn 

tion of finite slope log, max W .  Conversely, for this asymptotic slope to be finite, 
the condition W < max W < 00 can be shown to be necessary. Also, gi(h)  has 
an asymptotic direction of slope - 1 +log rnax W/log C*i. When rnax W < C@, 
this slope is negat,ive and $i(h) = 0 has no root other than 1 (i.e. ai = 00). When 
max W > Csi, and particularly when max W = co, ai < 00. Our assertion that, 
in general (except for some inequalities), the values of A, Q and the oli are in- 
dependent, is in this case very apparent. See also the caption of figure 2. 

Parabolic determining functions. Suppose that W is lognormal, namely log W is 
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FIGURE 2. Characterization of the distribution of E(D) when, respectively, (a)  log W is 
normal; $,(h) is then a parabola and $,(h) = 0 has two finite roots (solid line) ; (b)  log W 
is a sum of sufficiently many terms to be a+ good approximation to the normal distribution : 
4,(h)  is then nearly parabolic for h < a, (dashed line) ; ( c )  log W is a sum of comparatively 
few terms; even when the quality of approximation to the normal distribution is good by 
other standards, it may be poor from the viewpoint of E ;  in the zone of interest, $,(h) is 
far from parabolic and $,(h) = 0 may have a single finite root, i.e. a1 = co (dash-dot line). 
Thus the degrees of sensitivity of various properties of 5 are very different. On the one 
hand, the moment properties of the distribution of E depend greatly upon fine details, 
namely the tail of the distribution of W :  a lognormal W never falls in the regular class, 
but a 'nearly lognormal' Wmay do so. On the other hand, the value of $,(a), henceof the 
spectral properties of E ,  and even more the value of $;( l), hence of the fractional dimension, 
will be essentially the same for the three cases as drawn. 

Gaussian of mean and variance (log W )  and a2 log W = ((log W ) 2 )  - (log W)2.  
Then ( Wh) = exp (h(1og W )  + h22-*a210g W ) ,  that is, 

f (h) = log, ( W h )  = (h(1og W )  + h22-la2 log W )  log, e. 

This f ( h )  is represented by a parabola, and so are the g5i(h).t To ensure that 
( W )  = 1, we must have {log W )  = - 2-la210g W ,  a quantity to be denoted (in 
order to fit Kolmogorov's notation) by - +,M log C. It follows that 

f ( h )  = Q(h- 1) hp. 

Hence, A< = - 3f '( 1)  + i = i - &, a< = 2i/p and Q = p. Here, the values of A, Q 
and the a are all functions of p, and are strongly interdependent; this is an ex- 
ceptional circumstance (see § 4.9). 

The determining function when log W i s  a sum of many uniform random variables 
(figure 2 ) .  Suppose that log W is bounded, but near-Gaussian according to the 
customary definition of 'nearness', for example, that log W is a sum of many 
uniform random variables. Then, for low enough values of h, $$(h) will nearly 
coincide with the parabola in the preceding paragraph, but asymptotically it 
will be a straight line. Roughly, $<(h) will look like a portion of parabola con- 

t Curiously, the converse is not true; since the lognormal distribution is not determined 
by its moments, see $2, other weights W may lead to the samef(h). 
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tinued by a straight tangent. If we have added many uniform components, and 
if p is large, this tangent will have positive slope and the two values of a, corre- 
sponding to the Gaussian log Wand to its approximation, will be about the same. 
If, on the other hand, we add few uniform random variables, and ,u is small, the 
tangent will have negative slope and the lognormal approximation will be 
entirely worthless. As an illustration, one of our computer simulations of a cascade, 
in which W was ostensibly lognormal and ai < 00, yielded results that were 
completely a t  variance with the expectations, and remained such until it was 
recalled that in fact our random variable log W was not Gaussian, but rather 
was given by an algorithm that added 12 uniformly distributed random variables. 
When the same program was run again, with sums of 48 and then of 192 such 
random variables, the results were changed to conform with the expectations. 
See also $5  4.3 and 4.9. 

4.4. Regular classes 

A classification of cascades can be based either on a single value of i, or on two 
or three values, typically i = 1 and i = 3. 

The regular class forfixed i. Here E(Di, L, 0) is, by definition, a non-degenerate 
random variable with all moments finite. In  a canonical cascade, the necessary 
and sufficient condition for lim($(x, L,q)) < co is that &h) < 0 for all h > 1, 

i.e. ai = co, or, alternatively, W < CJi.  As a corollary, Q < 3. A formal argument, 
replacing the limits of the moments with the moments of the limit, suggests that 
@(x, L, 0)) < 00 if and only if q5$(k) < 0 for all h > 1. 

To justify this formal argument, i t  suffices to use a theorem of Doob (1953, 
p. 319). In  physics, such technicalities are ordinarily disregarded, but $ 4.5 shows 
the issue to be significant in the degenerate case, which warns us to take the 
matter seriously. 

A microcanonical cascade is always regular from the viewpoint of eddy averages. 
Also, the condition W < C)i is necessary and sufficient for the weights W t o  
be admissible as weights in a microcanonical cascade with the same i. Consider, 
then, both the microcanonical and the canonical cascades corresponding to 
a weight W belonging to the regular class. The effect of changing the definition of 
the cascade is only to change the high frequency term of E,.(x, L, 0) from 1 to 
some random variable having finite moments of all orders. In  other words, the 
only difference between the full canonical random variable ET and its lognormal 
low frequency term lies in a numerical factor whose values are about the same 
when q = 0 and 7 is small but non-zero. Such a factor is comparatively innocuous. 

Pr(W = 1/p) = p  and P r ( W  = 0) = 1-p, 

I-fO 

As a specific example, if W is binomial with 

4$(h) < 0 if and only if pC)i > 1, i.e. p > l/Cii. 
The uniformly regular class. When a, = 00, alternatively when A, > 0, then, 

for all i, E(D, L, 0) is a non-degenerate random variable with finite moments. 
In  this class, e(D, L, 7) may be said to be ‘approximately lognormal’. Yaglom 
has implicitely assumed that this situation prevails in practice. This may, but 
need not, be so. Only experiment may tell. 



350 B. B. Mandelbrot 

4.5. Degenerate classes 

The degenerate class for fixed i. This is defined by E(D, L, 0 )  being zero almost 
surely. A sufficient condition is A < 0 (from which it follows that a < 1). 

The proof (see § A  3) consists of showing that the number of elementary sub- 
eddies of side r contributing to the bulk of T(x, L, 0 )  is roughly equal to (L/r)*i. 
From Ai < 0 it follows that, as r,~ + 0, this number tends to zero, and so does 
w, L, 7). 

First example. Pr ( W = l / p )  = p and Pr (W = 0) = 1 - p  with p < 1lC. 
Second example. Since a lognormal distribution is unbounded, a lognormal 

cascade is never regular. Since A< = i - &p, the cascade is degenerate whenever 
p > 2i. In  particular, Er(x, L, q )  is lognormal only when r = 7. 

The uniformly degenerate class. When E(D5, L, 0)  is degenerate for i = 3, i.e. 
when A < 0, E is also degenerate for i = 2 and i = 1. 

4.6. Irregular classes 

The irregular class for fixed i. This is defined by s(Di, L, 0 )  being non-degenerate, 
with (Ch(Di, L, 0 ) )  < 00 for small enough h > 1, but (Eh(Di, L, 0)) = 00 for large 
finite h. The class is characterized by 1 <ai <co, and the cut-off between finite 
and infinite moments is h = a,; see Mandelbrot (1973) and Kahane (1973). 

The uniformly irregular class. When E(Di, L, 0 )  is non-degenerate for i = 3 and 
non-regular for i = 1, it  is irregular for all i. 

4.7. Mixed classes 

Since a1 < 0 1 ~  < a3, the classes to which a cascade (i = 3) and its cross-sections 
(i = 1 and i = 2) belong may be different. Neglecting the behaviour for i = 2,  
three possibilities are open. We shall give one example of each. 

An example from the mixed regular-degenerate class. Pr (W = 1/p) = p and 
Pr(W = 0) = 1 - p  with C-l < p < C-f. Here $&h) < 0 but $,(h) > 0 for all 
h > 1. That is, the cascade is regular for i = 3 but degenerate for i = 1. 

Comments. I doubt whether this mixed class ever is encountered in practice, 
because it suggests that the spatial distribution of dissipation is sparser than 
I think likely. 

An example from the mixed regularirregular class. C = 27, so that C* = I' = 3, 
and the random variable W is either equal to 3.7, with probability 0.1, or equal 
to  0.7, with probability 0.9. Since W < C, a three-dimensional cascade with this 
W is regular and may correspond to a canonical approximation to a micro- 
canonical cascade. On the other hand, it is not true that W < I', while it is true 
that &( 1)  < 0,  and as a result a one-dimensional cascade with this W is irregular. 

Comments. I consider this last situation to be a very strong possibility. If and 
when it occurs in practice, the distribution of one-dimensional averages is not 
lognormal, even approximately. One task for the experimental study of turbulence 
should be this: to check whether or not such a mixture ever occurs. Also, i f  under 
diflerent circumstances one observes either this mixture or the uniformly regular 
class, it is a task to classify such circumstances according to the class which they lead. 
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A n  example fromthemixedirregular-degenerate class: lognormal W .  If 2 < ,u < 6, 
the full three-dimensional pattern is irregular, while one-dimensional cross- 
sections are degenerate. 

4.8. Digression: A$ as a fractional intrinsic dimension 

Select two arbitrary small thresholds w and y. It can be shown (see § A  3) that 
when Ai > 0 the eddies of side r can be divided into two groups. The eddies of 
the first group contain a proportion above 1 - p  of the whole dissipation, but their 
number lies between (L/r)Ai-y and (L/r)Ai+y, which makes the group relatively 
very small. Thus, almost all eddies belong to the second group; but, taken 
together, they include a proportion of the total dissipation a t  most equal to w ,  
which makes the dissipation negligible. 

It is convenient to call Ai an intrinsic dimension, alternatively (because i t  
need not be an integer), a fractional dimension. 

The notion that a geometric figure can have a fractional dimension was con- 
ceived in 1919 by a pure mathematician, Hausdorff. It is closely related to the 
Cantor set, and both have the reputation of lacking any conceivable application, 
in fact of ‘turning off’ any natural scientist. I believe that this reputation is no 
longer deserved and hope to show (elsewhere) that in fact fractional dimension 
is something very concrete and that different aspects of it are useful measurable 
physical characteristics. Examples are the degree of the wiggliness of coastlines 
(Mandelbrot 1967), the degree of clustering of galaxies and the intensity of the 
intermittency of turbulence. See also Mandelbrot ( 1974). 

In  these applications, it  is best to use a semi-formal variant called the ‘self- 
similarity dimension ’, which is of more limited validity than Hausdorff ’s concept, 
but incomparably simpler. It derives from elementary features of the usual 
concept of dimension for segments of a straight line for rectangles and for 
paralIeIepipeds. A line has dimension A = 1, and for every positive integer N ,  
the segment where 0 < x < X can be exactly decomposed into N non-overlapping 
segments of the form (n - 1) X / N  < x < n X / N ,  where n runs from 1 to N .  Each 
of these parts is deducible from the whole by a similarity of ratio p ( N )  = N-1. 

Similarly a plane has dimension A = 2 and for every integer J N ,  the rectangle 
where 0 < x < X and 0 6 y < Y can be decomposed exactly into N non- 
overlapping rectangles of the form 

( k  - 1) N / J N  6 x < k X / J N  and (h - 1) Y/,/N 6 y < h Y / J N ,  
where k and h run from 1 to N .  Each of these parts is deducible from the whole 
by a similarity of ratiop(N) = 1/Nt. More generally, a A-dimensional rectangular 
parallelepiped can for every integer NilA be decomposed into N parallelepipeds 
deducible from the whole by a similarity of ratio p ( N )  = 1/N1/*. 

For each of the above figures, the dimension A satisfies the relation 
A = -logN/logp(N), 

and this is the property that suggests a generalization of the concept of dimension 
to the set on which the bulk of intermittent turbulence is concentrated. Here 
I / p ( N )  = L/r  and for every y > 0, (L/r)Ai-7 < N < (L/r)Ai+y, i.e. 

Ai - y < log N/logp(N) < A, + y. 
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In  other words the dimension is Ai. Using the inequality Ai < i, the intuitive 
notion that turbulence concentrates on an extremely sparse set is expressed 
numerically. By choosing W appropriately, the dimension Ai can take any value 
between 0 and i. Note also that, when A < 3, &A3 = *A is greater than 

&A2 = &(A- 1)) 

which in turn is greater than hi = (A - 2). The inequality A < 3 expresses that 
a figure does not fill the space dimensionally, and &A > A - 2 expresses that the 
intersections of such a figure by straight lines are dimensionally even less filling. 

I have great faith in the practical usefulness of fractional dimension and hope 
it will be explored further. In  particular, it opens up the issue of the degree of 
connectedness of the volume where the dissipation concentrates. However, 
neither the microcanonical nor the canonical models appear to provide a satis- 
factory framework, because both allow the dissipation to be divided very dis- 
continuously. Therefore connectedness should be studied in some other context, 
say, that of the limiting lognormal model. 

4.9. Further comments on the lognormal approximation to W ,  and 
on parabolic approximations to f ( h )  

Suppose that W is non-lognormal and bounded with c210g W < co, and let W* 
be its lognormal approximation, the corresponding determining functions being 
f (h)  andf*(k), with the obvious definitions for q5: (h). We have already noted that, 
since f (h)  has (for h -+ 00) a finite asymptotic slope log,max W ,  while f* (h)  is 
parabolic, their asymptotic behaviours differ qualitatively. On the other hand, 
the behaviour of f (h )  and the $i(h) for small h only depends on (log W )  and 
a2 log W ,  and therefore remains unchanged when log W is replaced by its normal 
approximation. Hence the following consequences. 

The moment of order h = $ is likely to be covered by this approximation. 
Therefore, the conclusions of Kolmogorov and Yaglom, obtained by applying 
the ‘$-law’, may well be essentially unchanged. 

For h = 1, f * (  1) need not equal 1. Also, &( 1) need not equal @‘( 1). In  extreme 
instances, like the one reported a t  the end of 9 4.2, they may have different signs. 
The ‘real’ &( 1) may be negative, meaning that the cascade is non-degenerate, 
while @’( 1) > 0 suggests the cascade is degenerate. The approximations of the 
values of Q and the mi may be even poorer. 

A different lognormal approximation to W ,  to be called W**, is achieved by 
approximating f(h) by a parabola f**(h) passing through f(0) = f(1) = 0 and 
having the correct slopef’( 1). The mean and variance of log W** are determined 
by the properties of this f**(h) near h = 0. Since, from the practical viewpoint, 
all that is of direct interest is the portion of $i(h) that lies between h = 1 and 
h = mi, we see that, when f(h) is smooth and the original ai is small, the error 
introduced by the lognormal approximation W ** may well be acceptable. 
Whenever such is the case, the various properties of 8(D, L, 0 )  linked to Ai, Q 
and mi turn out after all to be related. That is, given the inaccuracy inherent in 
experimental work, one may be brought back to the situation prevailing when the 
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single characteristic parameter Q was thought sufficient. When on the contrary 
the original at is large, and especially when it is infinite, the error in using W** 
is very big, meaning that the process of approximation changes significantly the 
class to which such a cascade belongs../- 

The author has greatly benefited from conversations with Jay M. Berger of 
IBM, Erik Mollo-Christensen of MIT, Robert W. Stewart, then of the University 
of British Columbia, and Akiva Yaglom of the Academy of Sciences of the USSR. 
Computer simulations were carried out by Gerald B. Lichtenberger, then of Yale 
University, and in part by Hirsh Lewitan of IBM. During the last of the re- 
visions of this paper for publication, Robert Kraichnan helped him to sharpen 
the distinctions between different forms of the cascades. Several early forms of 
portions of this paper have been circulated privately, excerpts and abstracts 
being published in the following references: Proceedings of the Summer Study 
Program in Geophysical Fluid Hechanics, Woods Hole, Massachusetts, 1965, 
Proceedings of the IUCG-I U T A M  International Symposium on Boundary 
Layers and Turbulence including Geophysical Applications, Kyoto, Japan, 1966 
(A Supplement to Phys. Fluids, 10 (suppl.), 1967, p. S302), Proceedings of the 
Polytechnic Institute of Brooklyn Symposium on Turbulence of Fluids and Plasmas, 
New York, 1968 (John Wiley, 1969). 

Appendix 
A 1. Differences between approximate and strict lognormality are deep, and in par- 

ticular the use of approximate lognormality to calculate moments i s  unsafe 

Let us consider a normal random variable G,  a Poisson random variable P and 
a bounded random variable B obtained as the sum of a large number K of 
random variables B, = log R, bounded by p < co. Since G, P and B will be 
assumed to be nearly identical, and since the mean and the variance are equal 
in the case of P,  they must be assumed equal for G and B also, and near identity 
also requires their common value S to be large. It follows that 

((eG)h) = exp (h8++Shz) = exp [S(h+ &hz)], 

( (eP)h)  = exp ( - 8+ 8eh) = exp [6(eh - l ) ] ,  

((eB)h) < exp (hKp) .  

Thus, ( (eB)h)  increases at  most exponentially with h, ((ea)h) increases more 
rapidly than any exponential, and ((eP)h) more rapidly still. The expectations, 
equal respectively to ( (eG))  = exp (1.58) and ( (ep) )  = exp (1.76)) are already very 
different. The coefficients of variation 

differ even more, and higher order moments differ strikingly. In  short, although 
B and P are nearly normal from the usual viewpoint (which is that of the ‘weak 

t This is another occurrence of a phenomenon also encountered in $A 1 : the moments 
of exp V are very sensitive t o  apparently slight deviation of V from normality. 

23 F L M  6 2  
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topology’), from the present viewpoint they are poor approximations to the 
normal distribution. However, when h < 1, i.e. when h = # as in the calculation 
of spectra, the discrepancy is less great. 

A 2. On Orszag’s remark concerning the determination of 
turbulence by its moments 

Homogeneous turbulence is presumed to be determined by its moments, to the 
derivation of which the bulk of the theory based on the Navier-Stokes equations 
is devoted. Is intermittent turbulence also so determined? To answer, note that 
it is classical that a random variable can have the same moments as the log- 
normal distribution, without itself being lognormal (‘classical ’ in probability 
theory means ‘has been recorded by Feller (1971)’; this particular example is 
in vol. 2 (2nd edn.), p. 227, where it is credited to C. C. Heyde). The reason for 
this indeterminacy is that the moments of lognormal eG increase so fast that 
X[(exp (2hG))]-*h < co, meaning that the lognormal distribution fails to satisfy 
a criterion due to Carleman. Orszag (1970) has observed that a corollary of this 
indeterminacy is that, if intermittent turbulence were indeed lognormal, it 
would not be determined by its moments. On the other hand, let Yaglom’s Ev be 
examined not through its lognormal approximation, but directly, as a product of 
independent factors R, < p. If those factors are bounded (Rk < /I), then it 
follows that the moments of intermittent turbulence satisfy the Carleman 
criterion and therefore the indeterminacy noted by Orszag vanishes.? 

A 3. The exponent of dimension introduced through the number of eddies of 
side r within which dissipation i s  concentrated 

The purpose of this section of the appendix is to show that among subeddies of 
side r ,  most of the dissipation is concentrated in a subset of about (L/r)Ai sub- 
eddies. 

Preliminary example: binomial weights. Let 

Pr(W = 0 )  = 1 - p  and Pr(W = p - l )  = p ,  

so that A = -logcp. Then EL(x, L, 7) = 1 factors into two terms: (a )  the contents 
of a non-empty eddy, namely 

( p - ~ ) l O g c ( W  = (L/r)lOgcP = (qp) 
and ( b )  the number of non-empty eddies of side 7 contained in a big eddy of side L. 
Since E L ( x ,  L, 7)  = 1,  the expectation of this last number must be (L/q)*. 

Second example: lognormal weights and cubic eddies D. Let us begin with 
the low frequency factor CT(x, L,r). With W lognormal as in 54.3, log 8, is 
Gaussian with variance p log (L/r) and expectation - Bplog (L/r) .  To simplify 
the notation, we shall denote CT by V .  When L/r  B 1, this lognormal factor 
has the feature that its expectation is overwhelmingly due to occasional large 

t Note added during revision. Novikov (1971,  p. 235) has made a remark to the same 
effect. 
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values, meaning that one can select a function threshold (L/r) in such a way that 
values of V below threshold (L/r) are negligible. Specifically, if one defines V* by 

V when V > threshold (L/r), 

0 otherwise, 
V * = {  

then EV* is arbitrarily close to 1. It is claimed that such a result is achieved 
when N is a function (otherwise arbitrary) such that lim N(L/r)/[log (L/r)]$ = 0, 
and when 'threshold ' is chosen to satisfy 

threshold (L/r) = (L/r)+p exp { - N(L/r) [plog (L/r)]&}. 

7-0 

with an integration range from log [threshold (r, L)] to infinity. The expression in 
braces transforms into 

- [x - &log (L/r)12/4plog (L/r) 

and by changing the variable of integration to 

x = [x - iplog (Llr)] [Znlog (L/ r ) ] t  

we obtain (v*) = (27r)-tJ exp ( - i x z )  dz, 

with an integration range from - N(L/r) to infinity. As L/r  -+ 00, ( V )  -+ 1, which 
shows that the contribution of other values of V to E,. is asymptotically negli- 
gible, and that the above choice of N has been appropriate to make V arbitrarily 
closely approximated by V*.  From now on, one can consider the cells 
of side r that lie withina cube of side L, and divide them into those for which 
V > threshold (L/r) and those for which V < threshold (L/r). 

For the former, the expectation of their total number is 

(L/r)3 Pr { V > threshold (L/r)]. 

In terms of the reduced Gaussian random variable 

[log + ip log (L/r)l i3 log (L/r)l+ = Q, 

the above probability becomes 

Pr{G > [plog(L/r)]:-N(L/r)}. 

Using a well-known tail approximation of G, the expected number in question is 
approximately equal to 

(Note that this last approximation is independent of N . )  
With cubic eddies replaced by straight segments, the only change is that in the 

above formulae the factor (L/r)3 is replaced by L/r and hence 3 - +,u by 1 - &,u = A,. 
As for the cells in which V < threshold (L /r ) ,  we want to show that their total 

contribution is negligible. The proof involves the high frequency factors E,.(x, r ,  7)  
and an application of the ergodic theorem. Details need not be given here. 

2 3 - 2  
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General weights W .  The assertion is that the number of eddies that are not 
nearly empty is about (L/r)A. The proof cannot be given, but its principle can be 
indicated. The quantity ( W  log W )  is related to Shannon’s concept of entropy- 
information, and it enters here because our problem can be restated in terms of 
information-theoretical asymptotical equiprobability ; see Billingsley (1965). 

A 4. Introduction to a model of intermittency based on the limiting 
lognormal processes, in which eddies are randomly generated and 

the partition of dissipation i s  continuous 

My earlier paper on intermittency (Mandelbrot 1972) involved a departure from 
the assumption of fj 2.1 : the grid was itself made random, being generated by 
the same model as the distribution of dissipation. The purpose of this section 
of the appendix is to serve to readers of this paper as an introduction to my 
earlier work. 

As a preliminary, let us consider a prescribed grid of eddies, and a canonical 
cascade with lognormal weight W :  log E(X, L, y) is Gaussian with variance 
,IL log (Lly) and expectation - 4,u log (L/y) .  Also, it was shown by Yaglom that the 
correlation of B is approximately proportional to d-Q, with Q = p. Because the 
eddies were prescribed, the random function E(X, L, 7) is non-stationary and 
discontinuous: it varies between an eddy and its neighbours, by jumps that 
may be very large. Both non-stationarity and discontinuity are of course quite 
unrealistic. One may instead demand that log e(x, L, y) be Gaussian and stationary, 
with the added restriction that it should be continuous’and vary little over 
spans of order shorter than 7. This will ensure that E(x, L, y) is nearly identical 
to ~ ( x ,  L, 7). It remains to ensure that ~ ( x ,  L, y) has the d-Q correlation. The 
simplest way is to require ~ ( x ,  L, y) to have a truncated self-similar spectral 
density, namely a spectral density equal to 71213 when the frequency w satisfies 
1/L < w < l / y  and equal to zero elsewhere. The resulting model may be viewed, 
alternatively, as combining self-similarity with a portion of the Kolmogorov 
third hypothesis, seemingly the maximum retrievable portion. 

The properties of B(D, L, y) relative to this model can be summarized as 
follows. The dimensions continue to be Ai = i - &,u and the cascades are never 
regular: for ,u < 2/i ,  they are irregular with ai = 2/p, while for p > 2/i ,  they are 
degenerate. Compared with a canonical cascade with a lognormal W ,  the main 
differences involve the values of certain numerical constants. 

A 5. Remarks on Kolmogorov’s third hypothesis of lognormality 

This hypothesis can be viewed as splitting into the family of assumptions that, 
for every cube of centre x and side r > y, ZJx, L, y) follows the lognormal dis- 
tribution, log c, having a variance equal to plog (L/r). First, it  will be shown that 
within Yaglom’s context of prescribed eddies, either canonical or microcanonical, 
Kolrnogorov’s third hypothesis cannot hold. Then, in a wider context, it will 
be shown to be tenable only under unlikely additional conditions. 

In the context of prescribed microcanonical eddies, the difficulty is the follow- 
ing. To say that log T, is normal is to say that a finite number of the independent 



Intermittent turbulence in self-similar cascades 357 

random variables log W, add to a Gaussian distribution, and it follows by a 
classical theorem (Levy-Cramer) that the log W, must themselves be Gaussian, 
i.e. unbounded. On the other hand, we know that microcanonical weights must 
be bounded. Thus, Kolmogorov’s hypothesis cannot apply strictly to any fixed 
value of r, not even for r = 7. 

In the context of prescribed canonical eddies, the difficulty is different. One 
can show that, in a canonical context, the correlation of every pair of E ,  is 
positive.? On the other hand, we shall see that Kolmogorov‘s set of hypotheses 
implies that a t  least some of those correlations are negative. Thus, the portion 
of Kolmogorov’s set of hypotheses concerning r = 7 might conceivably hold, 
but the different portions corresponding to several values of r are incompatible, 
meaning the hypotheses are internally inconsistent. 

More generally, the joint assumptions that the random variables logET(x, L, 7) 
are normal for every r ,  with g2 log ET = p log (L/r) and (log E,) = - &clog (L/r), are 
incompatible with any model that leads to a positive reduced covariance for P,. 
Indeed it would follow from the assumptions that r3PT, the mass of turbulence in 
a. cube, satisfies 

When r reaches its maximum value, which is r = L, then for all h the above 
moment will reduce to r3h, as it should. But the nature of convergence to this 
limit must be examined more closely, by subdividing our cube into (say) Z 3  por- 
tions. When +h > 2p,  the exponent of r in the above expression is negative, and as 
a result the value of the ratio {(r3ET)h)/([(Br)”~lh) is less than 23. From an 
elementary result of probability, this means that a t  least two of our subcubes 
must have a negative reduced correlation. This conclusion, and hence Kolmogo- 
rov’s form of the lognormal hypothesis, is inconsistent with the assumed positive 
covariance of P,,(x, L, q).$ 

This is the moment to point out that in my limiting lognormal variant of 
Kolmogorov’s model (see $ A  4) the above inconsistency is avoided because every 
formerly misbehaving moment turns out to be infinite. 

([r3Pr(x, L, q ) ] h )  = y3h--)h(h--l)/1Lfh(h--l)p. 
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